Musculoskeletal System

Sakchai Chitpakdee, M.D.

Contents
- Bones
 - Osteoporosis
 - Rickets, osteomalacia, hyperparathyroidism, renal osteodystrophy
 - Fracture
 - Osteonecrosis (Avascular necrosis)
 - Infections
 - Bone tumors and tumor-like lesions

- Joints
 - Arthritis and osteoarthritis
 - Tumor and tumor-like lesions of joints

- Skeletal muscle
 - Muscular dystrophies
 - Inflammatory myopathies
 - Myasthenia Gravis

Osteoporosis
- Increased porosity of skeleton resulting from reduced bone mass
 - Localized: disused osteoporosis
 - Generalized: metabolic bone disease
 - Primary: Senile, postmenopausal, idiopathic
 - Secondary: Vit D deficiency, Steroids
 - Most common:
 - Senile osteoporosis
 - postmenopausal osteoporosis

Osteoporosis
- Clinical course:
 - Vertebral fractures: thoracic and lumbar regions, painful
 - Multiple fractures → loss of height, lumbar lordosis and kyphoscoliosis
- Diagnosis:
 - 30-40% bone loss → detected by radiographs
 - Dual-energy absorption and quantitative CT
 - Biopsy

© Flexwise 2005
Osteoporosis

- Prevention and treatment:
 - Exercise
 - Calcium and vitamin D intake
 - Estrogen replacement
 - Biphosphonate
 - Recombinant PTH

Rickets and Osteomalacia

- Defect in matrix mineralization
- Lack of vitamin D or disturbance of its metabolism
- Children → “rickets”
 - Skeletal deformities
- Adults → “osteomalacia”
 - Osteopenia → fracture

Hyperparathyroidism

- PTH → ↑ osteoclastic activity
- Osteitis fibrosa cystica (brown tumor)
- Clinical features:
 - Fracture, bone deformities
 - Joint pain and dysfunction

Renal Osteodystrophy

- Skeletal changes of chronic renal disease:
 - High turnover osteodystrophy
 - Osteoclastic bone resorption (osteoporosis)
 - Low turnover or aplastic disease
 - Matrix mineralization (osteomalacia)
- Pathogenesis:
 - Vitamin D def. → hypocalcemia → PTH ↑
 - Hyperphosphatemia → PTH ↑
 - Metabolic acidosis → bone resorption ↑
 - Aluminum deposit → bone mineralization ↓
Fractures

- Classification:
 - Complete vs. incomplete
 - Closed (simple) vs. Opened (compound)
 - Comminuted (splintered)
 - Displaced
 - Pathologic fracture (underlying bone dis.)
 - Stress fracture (repetitive loads)

Reparative process:

- 1st week → organizing hematoma (soft tissue callus, procallus)
- 2nd or 3rd week → bony callus (cartilage and bone formation)

Delayed healing: → nonunion

- Displaced, comminuted, compound fractures
- Inadequate immobilization
- Infections
- Calcium ↓, phosphorus ↓, Vitamin def. diabetics, vascular insufficiency

Osteonecrosis (AVN)

- Ischemia → infarction

- Mechanisms:
 - Vascular interruption (fracture)
 - Corticosteroids
 - Thrombosis and embolism (nitrogen bubbles, dysbarism)
 - Vessel injury (vasculitis, radiation)
 - ↑ Intraosseous pressure and vascular compression
 - Venous hypertension

Clinical course:

- Subchondral infarcts → chronic pain, 2nd osteoarthritis
- Medullary infarcts → clinically silent, painful, collapse

- Pyogenic osteomyelitis

 - Bacterial infections:
 - S. aureus (80-90%) E. coli, Pseudomonas, Klebsiella: IVDU, GU tract
 - Mixed organisms: fracture, direct spread
 - H. influenzae: neonatal period
 - Salmonella: sickle cell anemia

 - Spread: hematogenous, extension from contiguous sites, direct implantation
Infections—Osteomyelitis

- **Pyogenic osteomyelitis**
 - **Sites:**
 - Neonate: Metaphysis, epiphysis
 - Children: Metaphysis
 - Adult: Epiphysis, subchondral
 - **Clinical course:**
 - Acute systemic illness, fever, malaise, leukocytosis, throbbing pain
 - X-ray: lytic bone destruction
 - Treatment: antibiotics and surgical drainage
 - 5-25% → chronic osteomyelitis

- **Tuberculous osteomyelitis**
 - 1-3% of patients with pulmonary or extrapulmonary TB have osseous infection
 - Hematogenous spread from visceral organs or direct extension
 - Spine infection (Pott disease): thoracic and lumbar vertebrae
 - More destructive and resistance to therapy than pyogenic osteomyelitis

Bone tumors and Tumor-like lesions

- **Hematopoietic (40%)**
- **Chondrogenic (22%)**
- **Osteogenic (19%)**
- **Unknown origin (10%): giant cell tumor**
- **Micellaneous:**
 - Fibrous and histiocytic
 - Vascular
 - Lipogenic
 - Neurogenic

Bone tumors and Tumor-like lesions

- **Characteristic:**
 - **Osteosarcoma:**
 - Adolescence, metaphysis around the knees
 - **Chondrosarcoma**
 - Adulthood, trunk, limb girdle, proximal long bones
 - **Giant cell tumors and chondroblastoma:**
 - Epiphysis of long bones
 - **Ewing sarcoma, osteofibrous dysplasia, adamantinoma**
 - Diaphysis

Bone-forming tumor

- **Osteosarcoma:**
 - Most common primary bone tumor
 - Age: 75% (children, <20 yo) 25% (elderly)
 - Secondary osteosarcoma: Paget disease, bone infarct, irradiation
 - Sites: metaphyseal region of long bone
 - Clinical: painful enlarging mass
 - X-ray: destructive, lytic and blastic mass with permeative margin, "Codman Triangle"
 - Treatment: Chemotherapy, limb salvage
Cartilage-forming tumor

- Osteochondroma:
 - Exostosis
 - Solitary and multiple (hereditary)
 - Late adolescence and early adulthood
 - Metaphysis of long bones
 - Clinical: slow-growing mass, can be painful, rare (<1%) → chondrosarcoma

Cartilage-forming tumor

- Chondrosarcoma:
 - Second most common malignant matrix-producing tumor of bones
 - Age 40 or older
 - Malignant transformation from enchondroma, osteochondroma, chondroblastoma
 - Sites: central portions of skeleton, pelvis, shoulder, and ribs
 - Clinical: painful enlarging mass, fracture
 - X-ray: Destructive radiolucent mass
 - Treatment: Surgical excision, chemotherapy

Miscellaneous tumors

- Giant cell tumor:
 - Benign but locally aggressive tumor
 - Patients in twenties to forties
 - Sites: epiphysis and metaphysis of any bones (common: distal femur and proximal tibia)
 - X-ray: large, purely lytic, eccentric and erode into subchondral bone plate
 - Treatment: Conservative surgery
 - 40-60% recurrent, 4% metastasis to lung
Metastatic disease

- **Adults:**
 - Prostate, breast, kidney, and lung

- **Children:**
 - Neuroblastoma, Wilms tumor, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma

- **X-ray:**
 - Multifocal or solitary (kidney, thyroid)
 - Lytic: Kidney, lung, GI and melanoma
 - Blastic: Prostate

Joints

- **Osteoarthritis:**
 - Degenerative joint disease
 - Progressive erosion of articular cartilage
 - Idiopathic (primary OA): aging phenomenon
 - Secondary osteoarthritis (5%): diabetics, ochronosis, hemochromatosis, obesity
 - Women: knees and hands
 - Men: hips

Osteoarthritis

- **Pathogenesis:**
 - Aging and mechanical effects
 - Genetic factors: high bone density

- **Clinical course:**
 - Primary OA: old age (>50 yr)
 - Secondary OA: younger age, underlying dis.
 - Deep achy pain, worsen with use
 - Morning stiffness, crepitus, limitation of movement
 - Nerve root compression (osteophytes)

Rheumatoid arthritis

- **Chronic systemic inflammatory disorder:**
 - skin, blood vessels, heart, lungs, muscles, joints

- **Pathogenesis:**
 - Autoimmune disease: arthritogenic antigen ➔ CD4+ helper T cells ➔ inflammatory cytokines
 - Genetic susceptibility: HLA-DR1*0401, *0404
 - Antigens: unknown
Rheumatoid arthritis

- Clinical course:
 - 50%, slow and insidious onset: malaise, fatigue, musculoskeletal pain, joint pain
 - 10% acute onset with severe symptoms
 - Site: small joints > large joints: MCP, PIP, MTP, IP, wrists, ankles, elbows, knees
 - 20%, partial or complete remission period
 - Joint destruction, deformity: swan neck, boutonniere of fingers
 - X-ray: juxta-articular osteopenia, bone erosion with narrowing of joint space

- Laboratory tests and Dx:
 - Serum rheumatoid factor (IgM to Fc portion): not specific
 - Synovial fluid analysis: inflammatory exudate
 - Clinical criteria: 4 criteria
 - Morning stiffness
 - Arthritis in three or more joints
 - Arthritis of typical hand joints
 - Symmetric arthritis
 - Rheumatoid nodules
 - Serum rheumatoid factor
 - Typical radiographic changes

- Treatment:
 - Anti-inflammatory drugs (aspirin, NSAIDs)
 - Steroids
 - Anti-TNF antibody, soluble TNF receptor

Seronegative spondyloarthropathies

- Ankylosing spondylitis
- Reactive arthritis (Reiter syndrome and enteritis associated arthritis)
- Psoriatic arthritis
- Arthritis associated with inflammatory bowel disease
Ankylosing spondyloarthritis
- Rheumatoid spondylitis and Marie-Strumpell disease
- Sites: axial, sacriiliac & apophyseal joints
- Age: 20-30 yr, M>F
- 90% HLA-B27 positive
- Clinical: low back pain, spinal immobility (ankylosis), fracture of spine, aortitis, amyloidosis

Reactive arthritis
- Noninfectious arthritis of appendicular skeleton occurs within one months of primary infection localized elsewhere
 - GU: clamydia
 - GI: shigella, salmonella, Yersinia, Campylobacter
 - Reiter syndrome: arthritis, nongonococcal urethritis/cervicitis, conjunctivitis
 - 80% HLA-B27 positive
 - Extraarticular: balanitis, carditis

Infectious arthritis
- Suppurative arthritis:
 - Bacteria: gonococcus, Staphylococcus, Streptococcus, Haemophilus influenza, E. coli, salmonella, Pseudomonas
 - Children <2 yr: H. Influenzae
 - Adults: S. aureus
 - Young women: Gonococcus
 - Sickle cell anemia: Samonella
 - Painful joint, fever, leukocytosis
 - Knees, hip, shoulder, elbow, wrist

Gout and Gouty arthritis
- Transient attacks of arthritis initiated by crystallization of monosodium urates (needle shape, neg. birefringent) within joints
- Pathogenesis: hyperuricemia → gout
 - Age: 20-30 yr after hyperuricemia
 - Genetic: Lesch-Nyhan syndrome
 - Heavy alcohol consumption
 - Obesity
 - Drugs: thiazides
 - Lead toxicity

Gout and Gouty arthritis
- Clinical course: four stages
 - Asymptomatic hyperuricemia: puberty male or menopause women
 - Acute gouty arthritis: 50% MTP joint, ankles, heels, knees, wrists, fingers, elbows
 - Intercritical gout
 - Chonic tophaceous gout: 12 years after first attack
 - Extra-articular: atherosclerosis, hypertension, renal colic, gouty nephropathy
Pseudogout
- Calcium pyrophosphate crystal deposit disease (CPPD)
- Age: over age 50
- Type: Idiopathic, hereditary and secondary (joint damage, hyperparathyroidism, hemochromatosis, hypomagnesemia, hypothyroidism)
- Clinical: asymptomatic, acute, subacute, chronic arthritis of knees, wrists, elbows, shoulder, ankles

Tumor and Tumor-like lesions
- Ganglion cysts:
 - Size: 1 to 1.5 cm near joint capsule or tendon
 - Site: wrists, fingers
 - Etiology: Cystic degeneration
- Synovial cysts:
 - Baker cyst of knees in RA patients
 - Synovial protrusion (diverticulum)

Muscular dystrophies
- X-linked muscular dystrophy (Duchene and Becker muscular dystrophy)
 - Pathogenesis: Dystrophin gene, Xp21
 - Deletion or frameshift mutation (DMD), Point mutation (BMD)
 - Clinical:
 - DMD normal at birth, delayed walking, clumsiness
 - Weakness begins in pelvic girdles, shoulder girdles
 - Enlargement of calf muscle (pseudohypertrophy)
 - Increased serum creatine kinase
 - Death from respiratory failure, pulmonary infection and cardiac decompensation
 - BMD: later onset and less severe
<table>
<thead>
<tr>
<th>Myasthenia gravis</th>
</tr>
</thead>
</table>
- Immune-mediated loss of acetylcholine receptors (AChRs); autoimmune disease
- W>M, Age < 40
- Thymic hyperplasia (65%), thymoma (15%)
- Clinical: extraocular muscles (ptosis, diplopia) → generalized weakness, respiratory paralysis
- Rx: anticholinesterase agents, prednisone, plasmapheresis, resection of thymoma

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
</table>
- Kumar, Kabbas, fausto: Robbins and Cotran Pathologic Basis of Disease: 7th ed
- http://www.pathguy.com/lectures/bones.htm